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Abstract. Large-scale knowledge graphs such as those in the Linked Data cloud
are typically represented as subject-predicate-object triples. However, many facts
about the world involve more than two entities. While n-ary relations can be
converted to triples in a number of ways, unfortunately, the structurally different
choices made in different knowledge sources significantly impede our ability
to connect them. They also make it impossible to query the data concisely and
without prior knowledge of each individual source. We present FrameBase, a
wide-coverage knowledge-base schema that uses linguistic frames to seamlessly
represent and query n-ary relations from other knowledge bases, at different levels
of granularity connected by logical entailment. It also opens possibilities to draw
on natural language processing techniques for querying and data mining.

1 Introduction
Over the past few years, large-scale knowledge bases (KBs) have grown to play an
important role on the Web. Many institutions rely on Linked Data principles to publish
their data using Semantic Web standards [2]. These KBs are mostly based on simple
subject-predicate-object (SPO) triples, as defined by the RDF model [15]. Such triples
are convenient to process and can be visualized as entity networks with labeled edges.

Whereas triple representations work straightforwardly for relations involving two
entities, many interesting facts relate more than just two participants – a problem that
has gained renewed attention in several recent papers [13, 22] as well as in the current
W3C proposal to add roles to schema.org [1]. For a birth event, for instance, one
may wish to capture not just the time but also the location and parents. For an actress
starring in a movie, the name of the portrayed character may be relevant. Such facts
naturally correspond to n-ary relations. In order to capture them as triples, several
different representation schemes have been proposed. Table 1 shows some possibilities of
expressing that an entity John was married in 1964, some of which also include additional
information such as the name of the bride. We will discuss these representations in more
detail later in Sect. 2.

As the example shows, this sort of semantic heterogeneity leads to significant data
integration challenges. One KB might use a simple binary property between two entities,
whereas another may instead choose a more complex representation that accommodates
additional arguments. The representations can easily be so at odds with each other that
no particular mapping between entities could bridge the differences. There are entities



at each side that have no counterpart at the other. This leads to several challenging
problems:

1. When linking data, there are currently no mechanisms to connect KBs with different
modeling choices. Predicates exist to link equivalent classes, instances, or properties,
but not for connecting the different patterns, as explained above. Existing work on
ontology and KB alignment [3] is limited to finding aliases.

2. When querying, the query must be built in a way that fits the particular modeling
choices made for the respective KB. Otherwise, the recall may be as low as zero [26].
Even worse, when we don’t have a single coherent KB but a set of different KBs,
there is no simple query (as could be formulated on a single given schema) that will
have a high recall across all KBs.

3. When natural language interfaces to KBs are queried, state-of-the-art systems
typically attempt to map verbs and predicate phrases to RDF predicates [33]. This
approach, however, cannot be applied when the KB fails to provide a compatible
binary relation.

Direct Binary Relation
John marriedOnDate 1964 .

RDF Reification
John marries Mary .
s type Statement .
s subject John .
s property marries .
s object Mary .
s time 1964 .

Subproperties
p subPropertyOf Marriage .
John p Mary .
p time 1964 .

Neo-Davidsonian (Specific Roles)
e type Marriage .
e groom John .
e bride Mary .
e time 1964 .

Neo-Davidsonian (General Roles)
e type Marriage .
e agent John .
e agent Mary .
e time 1964 .

Table 1: Triple Representations of n-ary Relations

FrameBase. To address these problems, we have created FrameBase, a broad-coverage
schema that can homogeneously integrate other KBs and has strong connections to
natural language. It overcomes the above-mentioned forms of heterogeneity – by sticking
to a specific modeling choice general enough to subsume the others (neo-Davidsonian
representation) – together with a large vocabulary for events and roles. This vocabulary
is reusable and based on an extensible hierarchy. We also develop a mechanism to
convert back and forth between the new representation and direct binary relations, using
a vocabulary of binary relations automatically generated from linguistic annotations.
These are more concise and can be used when only two arguments are relevant.

This paper is structured as follows. After analyzing the state of the art in Sect. 2,
an overview of FrameBase is given in Sect. 3. Section 4 explains how we construct the
FrameBase schema, while Sect. 5 presents our representation conversion mechanism.
Section 6 provides a qualitative evaluation, and Sect. 7 concludes the paper with an
outlook to future work.



All triples Core Linking event Reasoning

RDF Reification (n+ 4)k (n+ 3)k +k(k − 1) One definite clause
Subproperties (n+ 2)k (n+ 1)k +k(k − 1) RDFS
Neo-Davidsonian 1 + n+ k 1 + n +0 Several def. clauses

Table 2: Triple Overhead. n is the number of participants in an event, and k the number of pairs
that are relevant to be linked by direct binary relations. The first column indicates the total number
of triples that can be materialized. The second column excludes direct binary relationships, which
can be inferred unambiguously by the inference system in the last column. In the case of RDF
reification, this inference could be accomplished by a rule creating the triple from its reification
triples. In the case of neo-Davidsonian representation, we use rules of a different form (described
later in Sect. 5). In both cases, each rule is a definite clause, i.e. a disjunction of logical atoms
with only one negated, which is the consequent when the clause is written as an implication. The
third column indicates the number of triples needed to connect entities that represent the same
event, which is a phenomenon that arises when using RDF reification or subproperties.

2 State of the Art
In this section, we review related work and conduct a thorough analysis of existing
approaches for modeling n-ary relations, which are synthesized in Table 1. In Table 2,
we provide a detailed comparison of their space efficiency, which has consequences with
regards to their applicability for large-scale KBs.

2.1 Direct Binary Relations

A common way to represent n-ary facts is to simply decompose them directly into
binary relations between two participants [8]. But in doing so, important information
may be lost. For instance, given a triple with property wasMarriedOnDate and two
triples with gotMarriedTo, we cannot be sure to which marriage the given time span
applies.

2.2 RDF Reification

The RDF standard proposes RDF reification [15], which introduces a new identifier
(IRI) for a statement and then describes the original RDF statement using three new
triples with subject, predicate, and object properties. Subsequently, arbitrary
properties of the statement can be captured by adding further triples about it.

In the different versions of YAGO [16], RDF reification is used to attach additional
information to the event represented by the original RDF triple (evoked by its property)
– as in the RDF Reification example in Table 1. This has the advantage that both the
original triple as well as the reified triple can be present in the KB and queries that do
not require the additional information can still use the original binary relation directly.
However, this also has several drawbacks:

– Formally, the event represented by a triple and the triple as a statement are different
entities with different properties. For instance, an institution may endorse the triple as a
statement without endorsing the marriage. Using RDF reification, both are represented
by the same RDF resource identifier, which conceptually is meant to be unambiguous.
This is a potential source of confusion and inconsistency.



– The number of triples increases by a factor of 4. For each triple S P O, one has
to add T a rdf:Statement, T rdf:subject S, T rdf:predicate P,
and T rdf:object O. These do not add any new information themselves but are
merely a prerequisite for then being able to extend the original binary relation to an
n-ary relation by subsequently adding more triples with T as subject.

– The advantage of being able to include the original non-reified triple only applies for
the primary binary relation, and not for the other n(n−1)

2 − 1 ones that can be formed
(not counting inverses). Some of these may be rare or irrelevant, but others may be
important and are indeed used in YAGO (e.g. bornAtPlace, bornOnDate).

– The choice of the primary pair of entities and their binary relation (John and Mary
in Table 1) is arbitrary, and a third party willing to query the KB cannot replicate the
choice independently. If their choice is different, they will not obtain any results. A
possible solution, which is actually implemented in YAGO2s, is to include the triples
for the other pairs and reify them, too, but this adds yet another factor of overhead,
besides data redundancy that would complicate updates.

– When two or more different events share the same values for the primary pair of
arguments, they will share the same triple, but require separate reifications, producing
non-unique triple identifiers. For example, if there are two flight connections be-
tween Paris and London with different airlines, the triple Paris isConnectedTo
London will be reified twice, with two different triple identifiers.
If the triplestore implementation makes use of quads (http://www.w3.org/TR/n-

quads/ ), the 4-fold overhead can be avoided (though the underlying storage needs
a new column), but the other disadvantages still remain. Quad-based singleton named
graphs [15] could be used instead of RDF reification, the problems being the same.

2.3 Subproperties
A recent proposal [22] aims to solve some of the issues with RDF reification by instead
declaring a subproperty of the original property in the primary pair, and using this
subproperty as the subject for the other arguments of the n-ary relation. This is shown in
the Subproperties example in Table 1.

While the approach enables us to use RDFS reasoning to obtain the triple with the
parent property that relates two of the participants, and also reduces the overhead of RDF
reification, it still suffers from the problems mentioned above related to the existence of
a primary pair. For one, the non-reified binary relationships for the other pairs cannot be
inferred from that subproperty.

2.4 Neo-Davidsonian Representations
Another approach, and the one that we will adapt for FrameBase, is to make use of
so-called neo-Davidsonian representations [18, p. 600f.]. This means that we first define
an entity that represents the event or situation (also referred to as a frame) underlying
the n-ary relation. Then, this entity is connected to each of the n arguments by means of
a property describing the semantic role [13, 23].

Note that the process of converting from the binary representation to the neo-
Davidsonian one is also called reification, but this is different from RDF reification
as discussed earlier. In RDF reification, an entity is defined that stands for a whole triple
so that additional triples can be used to describe the reified triple as a unit that represents



a statement. However, in the context of event semantics, reification is used to denote
the process by which an entity is defined that refers to the event, process, situation,
or more generally, frame, evoked by a property or binary relation. Having done this,
additional information about it can then easily be added. Both kinds of reification have in
common that a new entity is defined to refer to something that before was not explicitly
represented by an entity in the KB, but in one case it is a RDF statement while in the
other it is an event.

Advantages. Table 2 compares the neo-Davidsonian approach to the alternatives.
These require a lot more triples when several direct binary relations need to be included.
In the worst case, k = n(n−1)

2 despite discounting reciprocal relations, but even if not
all of these relations are relevant, connecting all agents and possibly patients to all other
elements would be relevant, which would easily satisfy k > n.

Semantic Heterogeneity. Unfortunately, there are different ways of using the neo-
Davidsonian approach, with different levels of granularity for the events and the semantic
roles, from a very small set of abstract generic ones [28] to more specific ones [4].

The Simple Event Model (SEM) Ontology [32] falls within the category of neo-
Davidsonian representation with general roles (see Table 1). It defines four very general
entities, Event, Actor, Place, and Time. It also establishes a framework for creating more
specific ones by extending these, but it does not provide these extensions, nor ways to
integrate existing KBs in a way that would solve the problem of semantic heterogeneity.
Similarly, LODE (Linking Open Descriptions of Events) [28] specifies only very general
concepts such as the four just mentioned.

Freebase [4] is a KB built both from tapping on existing structured sources and
via collaborative editing. Although it uses its own formalisms, there are official and
third-party translations to RDF. Freebase makes use of so-called mediators (also called
compound value types, CVTs) as a way to merge multiple values into a single value,
similar to a struct datatype in C. There are around 1,870 composite value types in
Freebase (1,036 with more than one instance) and around 14 million composite value
instances. While CVTs do not represent frames or events per se, from a structural
perspective, they can be regarded as isomorphic to a neo-Davidsonian representation
with specific roles (see Table 1). However, Freebase places a number of restrictions on
CVTs. For instance, they cannot be nested, and there is no hierarchy or network of them
that would for example relate a purchasing event to a getting event.

There is ongoing work to add the modeling of semantic roles to schema.org [1].
Schema.org is an effort sponsored by Google, Yahoo, and Microsoft to establish common
standards for semantic markup in Web pages. Currently, the new roles pattern proposal
is just a proposed model without a proper role inventory, and schema.org merely targets
a small restricted number of domains.

FrameNet [11, 27] is a well-known resource in natural language processing (NLP)
that defines over 1,000 frames with participants (so-called frame elements). For example,
the verb to buy and the noun acquisition are assumed to evoke a commercial transaction
frame, with frame elements for the seller, the buyer, the goods, and so on.

Previous work has proposed general patterns for using FrameNet in knowledge
representation [12] and converted FrameNet to RDF [24], proposing a way to gener-
ate schemas from FrameNet. Similarly, the FRED system [25] for building semantic



representations from natural language can be configured to use FrameNet.

3 System Overview
As we have seen, there are a number of different representations used in KBs. In this
paper, we use the linguistic resources FrameNet [11] and WordNet [9] to fully develop an
extensive schema for large-scale knowledge representation and integration. The schema
is composed of an expressive neo-Davidsonian level that draws on a large common
inventory of frames, together with a more concise level of direct binary relations, which
is connected to the former by means of inference rules.

3.1 FrameNet-based Representation

The use of FrameNet is motivated by the following considerations.

– FrameNet has a long history and aims at descriptions of arbitrary natural language.
It thus provides a relatively large and growing inventory of frames and roles, with a
broad coverage of numerous different domains.

– FrameNet comes with a large collection of English sentences annotated with frame
and frame element labels. This data led to the task of automatic semantic role
labeling (SRL) [14] of text, now one of the standard tasks in NLP. This strong
connection to natural language facilitates question answering and related tasks.

– While FrameNet’s lexicon and annotations cover the English language, its frame
inventory is abstract enough to be adopted for languages as different as Spanish
and Japanese [29]. This also makes it much more suitable as a basis for knowl-
edge representation than language-specific syntax-oriented SRL resources such as
PropBank [19].

– FrameNet provides an reasonable level of granularity for the phenomena that humans
care to describe. From a theoretical perspective, there is no universally appropriate
single level of reification. Any frame element might be reified on its own, and any
two elements of a frame could be connected directly by a predicate. Using FrameNet,
we strike a well-motivated balance, at a point that is granular enough to constitute a
model for natural language semantics. As we will explain in Sect. 5, we also provide
a second level of representation, less expressive but more concise, based on the
direct binary predicates between frame elements.

3.2 Overview

For creating the FrameBase schema using FrameNet, we take the following steps, which
will be further explained in Sect. 4.

a) FrameNet–WordNet Mapping. First, we create a high-precision mapping between
FrameNet and another well-known lexical resource called WordNet [9], which will
be used to enrich the lexical coverage and relations of the FrameBase schema.

b) Schema Induction. We use FrameNet, WordNet, and the mapping to create an RDFS
schema for FrameBase that has very wide coverage and is extensible. The schema
exploits semantic relations from these components (e.g., synonymy, hyponymy, and
perspectivization) to transform the original resources for our lightweight RDFS model.



c) Automatic Reification–Dereification Mechanism. We create reification–
dereification rules in the form of definite clauses that allow the KB to be
queried independently of whether a frame is reified or not, and that may also be used
to reduce overhead in the KB.

4 FrameBase Schema Creation
4.1 FrameNet–WordNet Mapping
While FrameNet [11, 27] is the largest high-quality inventory of semantic frame descrip-
tions and their participants, WordNet [9] is the most well-known resource capturing
meanings of words in a lexical network, covering for example nouns and named entities
missing in FrameNet. WordNet, for instance, serves as the backbone of YAGO’s ontol-
ogy. We propose a novel way of mapping the two resources, which later enables us to
integrate both of them into our schema.

WordNet contains synsets, which are sets of sense-disambiguated synonymous words
with a given part of speech (POS), such as noun or verb. FrameNet contains lexical
units (LUs), which are also POS-annotated words associated to frames. Because of
the semantics of the containing frame, lexical units are also disambiguated to a certain
extent, though not with the same granularity as in WordNet. Our objective is to map
synsets and lexical units with the same meaning, so we can later use this to enrich our
FrameNet-based schema with relations and annotations from WordNet.

We choose to map each lexical unit to one and only one synset. While there are some
lexical units that could be mapped to more than one synset, this will favor precision,
which is desirable for the purpose of obtaining a clean knowledge base. The only cases
where this model would be detrimental to precision are those where lexical units do not
have any associated synset, but these are few and most can easily be avoided by omitting
lexical units with parts of speech not covered in WordNet, such as prepositions.

Our choice allows us to model the mapping as a function S(l|a, b) from lexical units
to synsets as in (1). Sl stands for the synsets that have the same lexical label and POS as
the lexical unit l, µL and µG are the lexical and gloss (definition) overlap, respectively,
f yields the corpus frequency of the synset, and a and b are parameters for a linear
combination (the third parameter can be omitted because of the argmax function).

S(l|a, b) = argmax
s∈Sl

µL(l, s) + a · µG(l, s) + b · f(s) (1)

The lexical overlap µL of a lexical unit l and a synset s is the size of the intersection
between the POS-annotated words from the lexical units in the same frame as l and the
POS-annotated words in s and its neighborhood. We define the neighborhood as the
synsets connected by a selection of lexical and semantic pointers such as “See also”,
“Similar to”, “Antonym”, “Attribute” and “Derivationally related”. This expansion is
useful to reduce sparsity and better match the sets with those generated for the lexical
units, which due to the different semantics of frames and synsets, may already include
these related words.

The gloss overlap µG is the size of the intersection between the set of words in the
definition of the lexical unit and the gloss of the synset. For preprocessing these, we rely
on the CoreNLP library [31] to clean XML tags, tokenize, POS-label, and lemmatize the
text, and we filter out all words except nouns and verbs.



We trained a and b with a greedy search over several randomized seeds, obtaining
optimal values a = 5, b = 0.13.

4.2 Schema Induction

We model frames as classes whose instances are the particular events. The frame elements
of each frame are properties whose domain is that frame. We create a class hierarchy of
frames as follows.

1. General Frames: FrameNet’s frame inheritance and perspectivization relations are
modeled as class subsumption between frames, by means of two specific properties
that inherit from rdfs:subClassOf, so that both remain distinguishable but
contribute to the hierarchy and allow RDFS inference. We additionally declared a top
frame for the hierarchy. Inheritance between frame element properties is modeled
with a direct subproperty relation.
Thus, under this model, an instance of the Commerce sell frame with a certain
Commerce sell-Buyer x, is also an instance of the Giving frame and x is the Giving-
Recipient, because the first frame inherits from the latter. Likewise, it is also an
instance of Transfer and x is the Transfer-Recipient, because Giving is a perspective
on Transfer.

2. Leaf Nodes: Since FrameNet’s original frame inventory is coarse-grained and dif-
ferent lexical units like construction and to glue evoke the same frame, we generate
what has occasionally been called a microframe model: We transform FrameNet such
that every lexical unit is treated as evoking its own separate fine-grained frame, which
is made a subclass of the more coarse-grained original FrameNet frame.

3. Intermediate Nodes The microframe nodes are very fine-grained, e.g. distinguishing
buy from acquire, while some original frames from FrameNet are very coarse-grained,
as mentioned above. For instance, various kinship relationships such as mother, sister-
in-law, etc. are lumped together. This wide range of lexical units may stand in various
lexical-semantic relationships without these being indicated, including synonymy,
antonymy, or nominalization. The only characteristic they have in common is that, by
definition, they evoke a similar kind of situation. Overall, neither the fine-grained nor
the coarse-grained levels are ideal for knowledge representation purposes.
We address this by providing a novel intermediate level composed of synset-
microframes that group equivalent LU-microframes together. For this, we generate
a set of directly equivalent synset-microframes for each LU-microframe, and we
declare owl:equivalentClass predicates between these pairs. This is the only
predicate we use that needs inference beyond pure RDFS, but we also include a pair
of reciprocal rdfs:subClassOf, which is semantically equivalent and leaves the
possibility of using any out-of-the-box RDFS inference engine. The clusters are thus
defined as the resulting equivalence classes over the set of all microframes.
These clusters are built in several steps. First, for a given LU, we get the corresponding
synsets from the FrameNet–WordNet mapping in Sect. 4.1. In the case of our mapping,
the set has no more than one element, but in the general case it could have more. Then,
we expand that set by adding all other synsets related by lexical relations reflecting
cross-POS morphological transformations: “Derivationally related”, “Derived from
Adjective”, “Participle” and “Pertainym”. In general, these lexical relations do not



necessarily imply any close semantics (e.g., create/make – creature/animal), but
when restricted to synsets all tied to the same FrameNet frame, such cases are
normally factored out. The goal of using the lexical relations is linking cross-POS
LUs that evoke the same specific situation with a different syntactic form, such as
nominalizations (produce–production), non-finite verb forms (produce–produced),
adjectivization, or adverbization.

We also use names, definitions and glosses in FrameNet and WordNet to create text
annotations for our schema. We attach lexical forms with rdfs:label and definitions
and glosses from FrameNet and WordNet with rdfs:comment.

5 Automatic Reification–Dereification Mechanism

While frames are convenient for representational purposes, users wishing to query the
knowledge base benefit from binary predicates between pairs of frame elements. For
example, for a birth event, binary predicates like bornInPlace and bornOnDate
can facilitate querying by offering a more compact and simple representation.

We thus present a novel mechanism to seamlessly convert between frame repre-
sentations and DBPs. This mechanism can also allow us to avoid materializing frame
instances when only two frame elements are needed.

We generate dereification rules of the following form:

?s BinaryPredicate ?o← ?f a Frame, ?f FE1 ?s, ?f FE2 ?o

Additionally, for each dereification rule there is a converse reification rule so that
one can go back from binary predicates to the frame representation. Each direct binary
predicate (DBP) has only one set of possible frame and frame elements associated, and
therefore chaining reification and dereification rules is an idempotent operation.

We build the reification–dereification rules automatically using the annotations
of English sentences given for different LUs in FrameNet, namely the grammatical
functions (GFs) and phrase types (PTs) [27] associated with different frame elements in
the example sentences of each lexical unit.

For verb-based microframes, FrameNet provides three kinds of GF labels: External
Argument (Ext), Object (Obj), and Dependent (Dep). Some of the PT labels that can be
found are N, NP, Obj, PPinterrog [27]. We create dereified binary predicates for the pairs
of frame elements whose syntactic annotations for some sentence satisfy the creation
rules below, using the GF and grammatical PT labels. We list the creation rules below,
and add some examples of reification-dereification rules associated to the DBPs created
by some of them. The postfixes “-s” and “-o” indicate the data associated to the FEs that
fill the first and second arguments of the DBP, or equivalently, the subject and the object
of the resulting RDF triple.

• Create DBP with name “CONJUGATETHIRDPERSSING(LU)” if
(GF-s EQUALS Ext) & (GF-o EQUALS Obj) &
(PT-o IN { N, NP, Obj, PPinterrog, Sinterrog, QUO, Sfin, Sub, VPing } )

Examples of obtained resulting DBPs and reification-dereification rules:
?S :dereif-Forming relationships-divorces ?O



↔


?R a :frame-Forming relationships-divorce.v ,
?R :fe-Forming relationships-Partner 1 ?S ,
?R :fe-Forming relationships-Partner 2 ?O .

?S :dereif-Win prize-wins ?O

↔


?R a :frame-Win prize-win.v ,
?R :fe-Win prize-Competitor ?S ,
?R :fe-Win prize-Prize ?O .

• Create DBP with name “is CONJUGATEPASTPARTICIPLE(LU) by” if
(GF-s EQUALS Obj) & (GF-o EQUALS Subj) &
(PT-o IN { N, NP, Obj, PPinterrog, Sinterrog, QUO, Sfin, Sub, VPing } )

• Create DBP with name “CONJUGATETHIRDPERSSING(LU) PREP” if
(GF-s EQUALS Ext) & (GF-o EQUALS Dep) & (PT-o EQUALS PP(PREP) )

Examples of obtained resulting DBPs and reification-dereification rules:
?S :dereif-Creating-createsFrom ?O

↔


?R a :frame-Creating-create.v ,
?R :fe-Creating-Creator ?S ,
?R :fe-Creating-Components ?O .

?S :dereif-Win prize-winsAt ?O

↔


?R a :frame-Win prize-win.v ,
?R :fe-Win prize-Competitor ?S ,
?R :fe-Win prize-Venue ?O .

For some FEs in this and the next rule, we assign a specific preposition, like “at”
for Time and “in” for Place. For example:
?S :dereif-Destroying-destroysAtTime ?O

↔


?R a :frame-Destroying-destroy.v ,
?R :fe-Destroying-Cause ?S ,
?R :fe-Destroying-Time ?O .

?S :dereif-Intentionally create-establishesInPlace ?O

↔


?R a :frame-Intentionally create-establish.v ,
?R :fe-Intentionally create-Creator ?S ,
?R :fe-Intentionally create-Place ?O .

• Create DBP with name “is CONJUGATEPASTPARTICIPLE(LU) PREP” if
(GF-s EQUALS Obj) & (GF-o EQUALS Dep) & (PT-o EQUALS PP(PREP) )

By using the grammatical subject as subject of the triple, we avoid rules defining
certain kinds of DBPs that would be rarely useful, like those connecting the time and
place, or the place and the cause.

There is no explicit syntactic annotation in FrameNet to indicate if the example
sentences are in passive form. We used two different heuristics for detecting this. One
draws on the POS annotations available in FrameNet, and decides that a sentence is in
passive iff the target (LU) verb is conjugated as a past participle, and there is a conjugated
form of the verb to be in a prior position, without another verb in between. The other
heuristic uses the Stanford Parser [20]. Both heuristics make type I and II mistakes



differently, so we discarded the cases where they disagree, and for the ones that they
agree that they are passive, we created the rules inverting the Ext/Obj GFs.

We restrict ourselves to verb-based microframes, because the process above is more
difficult and error-prone with nouns. However, the synset-microframe clustering of our
schema already makes many of the morphosemantic variations of a verb, including
nominalizations, logically equivalent.

With the rules obtained with the process above, the same DBP can be associated to
different pairs of frame elements in a given LU-microframe, owing to different senses or
syntactic frames for a given verb (for example the transitive and intransitive frames for
smuggle). This would conflate different senses, and if the reification and the dereification
directions of the rules were chained, it would logically entail different pairs of frame
elements, which would not be sound. Furthermore, a given pair of frame elements
can also produce different DBPs. To achieve the idempotency mentioned earlier, we
use the Kuhn–Munkres algorithm to obtain a one-to-one assignment, using as weights
the number of annotated example sentences for a DBP and a pair of frame elements,
because the patterns with more example sentences are usually more intuitive. The cubic
complexity of the algorithm is not a concern because each frame leads to a separate
graph on which we can operate independently.

We have implemented the reification-dereification rules as SPARQL CONSTRUCT
queries, due to SPARQL’s prominence as a standard query language for KBs. These can
be used to materialize the DBPs into the KB. Other options would be possible, such as
using a general-purpose inference engine that can handle propositional clauses, like the
Rubrik reasoner in Jena [5].

6 Evaluation
We now evaluate the quality of the results and show some example queries.

6.1 FrameNet–WordNet Alignment
To evaluate the created schema, we first compared our FrameNet–WordNet mapping to
the MapNet gold standard [30]. MapNet uses older versions of FrameNet and WordNet,
so that we had to apply mappings from WordNet 1.6 to 3.0 [7], removing those with
a confidence lower than one. For mapping FrameNet 1.3 to 1.5, we removed the few
LUs that are not contained in the new version. Table 3 compares the results against
state-of-the-art approaches and the scores that they report on the MapNet gold standard.
As expected, our approach achieves high precision, while still maintaining good recall.
We use 5-fold cross-validation for our results.

6.2 Schema Induction
The FrameBase schema is based on FrameNet and WordNet and our mappings between
the two resources. It provides 19,376 frames, including 11,939 LU-microframes and
6,418 synset-microframes, all with lexical labels. A total of 18,357 microframes are
clustered into 8,145 logical clusters, which are the sets of microframes whose elements
are linked by a logical equivalence relation. The size of the schema is 250,407 triples.

We have obtained an average precision of 87.55% ± 6.18% with a 95% Wilson
confidence interval. The evaluation showed a small change of nuance for 31.15%±9.38%



Prec Rec F1 Acc

SVM Polyn. kernel 1 [30] 0.761 0.613 0.679 —
SVM Polyn. kernel 2 [30] 0.794 0.569 0.663 —
SSI-Dijkstra [21] 0.78 0.63 0.69 —
SSI-Dijkstra+ [21] 0.76 0.74 0.75 —
Neighborhoods [10] — — — 0.772
Our mapping 0.789 0.709 0.746 0.864

Table 3: Comparison of our FrameNet–WordNet mapping to state-of-the-art approaches in terms
of precision, recall, F1, and accuracy

of the correct pairs – most of these are caused by our choice to use semantic pointers
such as “Similar to”, which could be removed if we desire very fine-grained distinctions
of microframes. The precision has been calculated from a random sample of 100 intra-
cluster pairs that have been independently annotated by two of the authors. We have
obtained the linear weighted Cohen’s Kappa over the three-valued combination of the
two variables with which we annotate each cluster pair, obtaining a value of 0.23 over a
maximum of 0.87. We obtained the scores with a random annotator.

In addition to the number of frames, the FrameBase schema provides a vocabulary
of frame elements that goes well beyond the knowledge currently included in most KBs,
in particular beyond time and location. This additional knowledge is routinely conveyed
in natural language, and we believe that using a schema that provides for it paves the
way to include it in KBs, either manually or automatically.

6.3 Reification–Derefication Rules

We also provide 14,930 reification–dereification rules for the same number of direct
binary predicates, with both human-readable IRIs and lexical labels. We obtained an
average precision of 86.59%± 6.41%, and 76.13%± 8.65% of the correct rules were
found easily readable. We consider a rule to be not easily readable if the name of the
direct binary predicate contains a frame element whose meaning is not obvious for a
layman reader, or if it contains a preposition that is appropriate for some but not all
possible objects, or it is not appropriate for the frame element in the name. For this
evaluation, we followed the same annotation methodology as for the intra-cluster pairs,
obtaining a Cohen’s kappa of 0.39 over a maximum of 0.54.

6.4 Knowledge Base Integration and Querying

Knowledge from other KBs such as Freebase can be integrated using integration rules,
which can also be implemented as SPARQL CONSTRUCT queries. The two examples
below were created manually.
CONSTRUCT {
_:e a framebase:frame-People_by_jurisdiction-citizen.n .
_:e framebase:fe-People_by_jurisdiction-Person ?person .
_:e framebase:fe-People_by_jurisdiction-Jurisdiction ?country .

} WHERE {
?person freebase:people.person.nationality ?country . }



CONSTRUCT {
_:e a framebase:frame-Leadership-leader.n .
_:e framebase:fe-Leadership-Leader ?o1 .
_:e framebase:fe-Leadership-Governed ?o2 .
_:e framebase:fe-Leadership-Role ?o3 .
_:e framebase:fe-Leadership-Type ?o4 .
_:timePeriod a framebase:frame-Timespan-period.n .
_:timePeriod framebase:fe-Timespan-Start ?o5 .
_:timePeriod framebase:fe-Timespan-End ?o6 .

} WHERE {
?cvti a freebase:organization.leadership .
OPTIONAL { ?cvti freebase:organization.leadership.person ?o1 .}
OPTIONAL { ?cvti ...:organization.leadership.organization ?o2 .}
OPTIONAL { ?cvti freebase:organization.leadership.role ?o3 .}
OPTIONAL { ?cvti freebase:organization.leadership.title ?o4 .}
OPTIONAL { ?cvti freebase:organization.leadership.from ?o5 .}
OPTIONAL { ?cvti freebase:organization.leadership.to ?o6 .} }

FrameBase facilitates novel forms of queries. The following query, for instance,
uses reified patterns to find the heads of the World Bank. Note that the clus-
ters implemented in RDFS allow searching for the noun head (from the lead-
ership frame), although the integration rule above only produced an instance of
fmbs:frame-Leadership-leader.n. The results in Table 4 show example in-
stances seamlessly integrated into our FrameBase schema from both Freebase (rows
1–3, extracted from the second example integration rule above) and YAGO2s (rows 4–5,
extracted with a similar integration rule made for YAGO2s).
SELECT DISTINCT ?leader ?role WHERE {
?lumfi a fmbs:frame-Leadership-head.n .
?lumfi fmbs:fe-Leadership-Governed ?worldBank.
?lumfi fmbs:fe-Leadership-Leader ?leader .
VALUES ?worldBank {yago:World_Bank freebase:m.02vk52z}
OPTIONAL{ ?lumfi fmbs:fe-Leadership-Role ?role } }

Alternatively, a direct binary predicate from the dereification rules can be used to obtain
the same non-optional results, as illustrated in the query below. Either leads or heads can
be used because the LU-microframes for these verbs are in the same cluster as the nouns
leader and head, and there is a dereification rule between the Leader and Governed
frame elements for both.
SELECT DISTINCT ?leader WHERE {
?leader fmbs:dereif-Leadership-heads ?worldBank.
VALUES ?worldBank {yago:World_Bank freebase:m.02vk52z} }

FrameBase can also be applied with natural language processing tools for question

?leader ?role

fb:m/0h ds2s ‘Caroline Anstey’ fb:m/04t64n ‘Managing Director’
fb:m/0d dq5 ‘Mahmoud Mohieldin’ fb:m/04t64n ‘Managing Director’
fb:m/047cdkk
‘Sri Mulyani Indrawati’

fb:m/01yc02 ‘Chief Operating Officer’

yago:Jim Yong Kim --
yago:Robert Zoellick --

Table 4: Results from the query



answering and data mining. For example, given the question “Who has been the head
of the World Bank”, the SRL tool SEMAFOR [6] successfully extracts the frame
Leadership with lexical unit head.noun and frame elements Governed and Leader. Based
on this, and after a named entity disambiguator like AIDA [17] matches World Bank
to the entities in the KBs, the structured query can easily be built. Moreover, the same
procedure can also be used to integrate new knowledge from a text into the KB, like
FRED [25] does.

7 Conclusion
FrameBase is a novel approach for connecting knowledge from different heterogeneous
sources to decades of work from the NLP community. Events can be described in very
different ways across different knowledge bases. Our framework not only provides an
efficient model to describe n-ary relations, but also integrates and transforms FrameNet
and WordNet to yield a broad-coverage inventory of frames. Additionally, linguistic
annotations in FrameNet such as the ones used to create the reification–dereification
rules can also be used to generate natural language, for instance, for summarizing a
portion of a KB for non-technical users.

Regarding future lines of work, we are currently completing the integration of the
instance data from YAGO2s and Freebase into the FrameBase schema, using integration
rules such as the examples in Sect. 6.4, but automatically generated. This will lead to the
first large-scale FrameNet-based KB. Given FrameBase’s close connection to natural
language, we also intend to study methods for better adapting semantic role labeling
tools to question answering [6]. We are also investigating the ways that FrameBase
enables for querying multiple KBs simultaneously with on-the-fly data integration.

Please refer to http://framebase.org for information on using FrameBase.
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