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ABSTRACT
Currently, datasets in the Linked Open Data (LOD) cloud
are mostly connected by properties such as owl:sameAs,
rdfs:subClassOf, or owl:equivalentProperty. These prop-
erties either link pairs of entities that are equivalent or ex-
press some other binary relationship such as subsumption.
In many cases, however, this is not sufficient to link all types
of equivalent knowledge. Often, a relationship exists between
an entity in one dataset and what is represented by a complex
pattern in another, or between two complex patterns. In
this paper, we present a method for linking datasets that
is expressive enough to support these cases. It consists of
integration rules between arbitrary datasets and a mediated
schema. We also present and evaluate a method to create
these integration rules automatically.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.1.0 [Information Systems]: Models and Principles—
General

Keywords
Linked Open Data, Schema matching, Heterogeneous knowl-
edge, Linguistic frames, Data integration

1. Introduction
The most common way in which datasets in the Linked

Open Data (LOD) cloud are currently connected to each
other is by means of triples expressing simple one-to-one rela-
tionships. The most well-established property is owl:sameAs,
which indicates equivalence between entities. Others, such
as owl:equivalentClass and owl:equivalentProperty de-
scribe equivalences for classes and properties. Previous work
has exposed widespread cases of misuse of the owl:sameAs
property and proposed alternatives expressing different
forms of near-identity [4, 8]. Additionally, properties such
as rdfs:subClassOf and rdfs:subPropertyOf denote sub-
sumption between classes and properties. Still, all of these
properties have in common that they are binary predicates.
Thus, they always link two individual items.

Knowledge in different datasets can, however, be related in
other ways than via a direct one-to-one relationship between
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a pair of entities. Often, a relation may exist between an
entity in one dataset and what is captured using a complex
pattern in another, or between two complex patterns. For
example, when using binary predicates, an example class
such as BirthEvent in one dataset cannot simply be linked
to a property such as bornOnDate or bornInPlace from an-
other schema or dataset. Yet, these two sources clearly
capture the same sort of knowledge, especially if the class
BirthEvent is the domain of properties such as personBorn,
date, and place. The first-order logic expression in Figure 1
formalizes one of these more complex relations. Even more
complex patterns are possible, as illustrated in Figure 2. In
this example, the complex pattern covers more information
than captured by the simpler pattern using the property
stopConstructionOf.
In contrast to binary relationships, related work has only

paid minimal attention to complex patterns. The EDOAL
format [3] and an ontology of correspondence patterns [14]
have been created as a way to express and categorize complex
correspondences between ontologies. These methods, how-
ever, do not address the actual integration, i.e., the method to
establish these relationships. The iMAP system [5] explores
a space of possible complex relationships between the values
of entries in two relational databases, for instance address
= concat(city,state). Ritze et al. [10] use a rule-based
approach for detecting specific kinds of complex alignment
patterns between entities in small ontologies.
In this paper, we generalize to a more general method for

linking datasets through a mediated schema, that can support
cases such as the above-mentioned examples. In addition,
we propose an automatic approach to create some complex
integration rules, which can be combined with existing 1-to-
1 links. We use a mediated schema as a hub because the
resulting star topology reduces the complexity of the overall
linking from quadratic to linear with respect to the number
of datasets. More specifically, we use FrameBase [11–13],
a rich schema based on linguistic frames, as the mediated
schema, because it is highly expressive and possesses the
metadata and structures that enable automatic creation of
mappings. Additionally, it has a strong connection to natural
language.
As SPARQL has become a common standard with the

necessary expressiveness to support logical rules, we imple-
ment schema mappings and integration rules as SPARQL
construct queries (Figures 1 and 2). However, the system can
easily be adapted to other formalisms and implementations.



∀v1v2(
∃e1(

tf (e1, a, BirthEvent) ∧
tf (e1, subject, v1) ∧
tf (e1, date, v2) ∧

)
↔

ts(v1, bornOnDate, v2)
)

Figure 1: Complex relation between two schemas, expressed
in first-order logic

∀v1v2 (
∃e1 (

tf (e1, a, Construction) ∧
tf (e1, createdEntity, v1) ∧
tf (e2, a, StopP rocess) ∧
tf (e2, cause, v2) ∧

)
↔

ts(v2, stopsConstructionOf, v1)
)

Figure 2: Very complex relation between two schemas, ex-
pressed in first-order logic.

2. Complex Integration Rules
In order to connect complex patterns across different data

sources, we develop an automatic method to produce inte-
gration rules that convert information from arbitrary sources
to information expressed using the FrameBase schema. This
method consists of three operations.

1. Creating Candidate Properties in FrameBase:
We first identify complex patterns within FrameBase
that might match properties from other sources. For
each of these complex patterns, we define a new can-
didate property as a shorthand form, with a concise
human-readable text label. All of this is done automat-
ically by exploiting the linguistic annotations available
in FrameBase. The result is a large set of matching
candidates in FrameBase.

2. Processing Candidate Properties in the Source
Datasets: We canonicalize properties in the source
datasets by extending their names.

3. Matching: We match the (refined) names of the prop-
erties from the source dataset with the names of the
binary candidate properties prepared for FrameBase.
When a sufficiently high match is encountered, we
produce an integration rule that connects the source
property with the complex triple pattern.

2.1 Creating Candidate Properties in FrameBase
The first step is to identify complex patterns in FrameBase

to which other data sources could potentially be matched. For
each of these complex patterns, we define a simple new binary
candidate properties that serves as a shorthand form between
two variables present in the complex pattern. In FrameBase
terminology, these new properties are called Direct Binary
Predicates (DBPs) and their relationship to the original
complex patterns in FrameBase is expressed via Reification–
Dereification (ReDer) rules [11]. As a result, we obtain a
large candidate set of binary predicates to which properties
from other datasets can be matched.
In order to detect relevant complex patterns in FrameBase,

we exploit its ties to natural language.

Binary Predicates Based on Verbs and Nouns
For relationships typically expressed using verbs, we have
already equipped FrameBase with a set of direct binary pred-
icates and corresponding reification-dereification rules [11].
Figure 3 illustrates the structure of such a ReDer rule, while
Figure 4 provides an example of a DBP with the verb “de-
stroyed” as the syntactic head.

?s <DIRECT_BINARY_PREDICATE> ?o
l
<FRAME_INSTANCE> a <FRAME_CLASS>
<FRAME_INSTANCE> <FRAME_ELEMENT-S> ?s
<FRAME_INSTANCE> <FRAME_ELEMENT-O> ?o

Figure 3: The general pattern of a simple dereification rule

?s dbp-Destroying-destroyedByMeans ?o
l
f type frame-Destroying-destroy.v
f fe-Destroying-Undergoer ?s
f fe-Destroying-Means ?o

Figure 4: Example of a simple dereification rule

Our previous work has already produced some DBPs based
on verbs [11] (such as in the example in Figure 4), and
nouns [13], such as isCauseOfEffect.
However, in all of these cases, the reified side of the

Reification–Dereification rules (the one at the bottom in
the examples) was restricted to a specific pattern using three
lines, such as the ones in Figures 3 and 4.

Binary Predicates Based on Adjectives
To these noun and verb-based DBPs, we now add new binary
predicates based on adjectives, using a generalization to more
complex patterns such as the one illustrated in Figure 2. One
can view these as very complex patterns, as they are more
involved than the ones considered previously in Figure 3.
FrameNet [1], a database of frames used to annotate the

semantics of natural language, forms the backbone of frames
in FrameBase. In FrameNet, different frames represent dif-
ferent kinds of events or situations with participants, called
Frame Elements (FEs). Frames also have Lexical Units
(LUs), which are words and terms that are associated to that
frame, and may evoke that frame when appear in a text.
Example texts are semantically parsed by annotating places
where a LU is evoking a frame, and neighboring words or
phrases are the values of some of the FEs belonging to that



Creation Rule: Copula+Adjective
Create DBP with name “is LU Prep FE-o” if
IsAdjective(LU) and phrase-type-o==PP[Prep]
and grammatical-function-s==Ext
and grammatical-function-o==Dep

Figure 5: Method for creating new adjective-based DBPs

?s dbp-Sound_level-isLoudToDegree ?o
l
f type frame-Sound_level-loud.a
f fe-Sound_level-Entity ?s
f fe-Sound_level-Degree ?o

Figure 6: Example of an adjective-based dereification rule
using the copula “to be”

frame. FrameBase represents frames and LUs as classes that
can be instantiated and FEs as properties whose frame is
their domain.
Figure 5 summarizes how to create adjective-based DBPs

using FrameNet’s example annotations of English sentences.
We define two target types of FEs: FE-s, the FE that should
connect to the subject of the triple whose property is the
DBP; and FE-o, the FE that should connect to the object.
Figure 3 shows how these two FEs are used in a ReDer rule.
For an adjective in a sentence that is annotated with a frame,
we need to check whether the text annotation also contains
two FEs that fulfill the following conditions. First, the
phrase type of FE-o needs to be a prepositional phrase (PP)
with preposition Prep. Second, the grammatical function
of FE-s needs to be that of a subject (Ext). And third, the
grammatical function of FE-o needs to be that of a dependent
(Dep). Figure 6 presents an example of a DBP created with
this method.
Although most occurrences of adjectives in the FrameNet

annotations involve the verb “to be”, pseudo-copulas “to
seem” and “to become” can also be combined with any ad-
jective. Therefore, we generate all possible DBPs with these
three copulas for all adjectives. For “to be” there are no
additional semantics (Figure 6). The pseudo-copulas, how-
ever, carry additional semantics, which are expressed in a
more complex pattern with an additional frame instance
(Figures 7 and 8). Figure 7 presents an example using the
Becoming frame and the FE fe-Becoming-Final_state in-
stead of fe-Becoming-Final_category (in FrameNet the
former is used with adjectives and adjective phrases, while
the latter is used with nouns and noun phrases). Figure 8
shows an example for the Appearance frame.

2.2 Processing Candidate Properties in the
Source Datasets

Having prepared a set of candidate predicates, each stand-
ing for a complex pattern in FrameBase, we now turn to the
source datasets that we wish to connect. For a given source
dataset, we process all its properties. Property names are
often composed of a single word that is highly polysemous.
This is particularly true when the verbs “to be” or “to have”
are omitted, which unfortunately is very often the case. For
example, many datasets use property names such as address
instead of hasAddress, or father instead of isFatherOf.
Our approach consists of the following six steps.

?s dbp-Sound_level-becomesLoudToDegree ?o
l
f type frame-Sound_level-loud.a
f fe-Sound_level-Entity ?s
f fe-Sound_level-Degree ?o
f’ type frame-Becoming-become.v
f’ fe-Becoming-Entity ?s
f’ fe-Becoming-Final_state f

Figure 7: Example of an adjective-based dereification rule
using the pseudo-copula “to become”

?s dbp-Sound_level-seemsLoudToDegree ?o
l
f type frame-Sound_level-loud.a
f fe-Sound_level-Entity ?s
f fe-Sound_level-Degree ?o
f’ type frame-Appearance-seem.v
f’ fe-Appearance-Phenomenon ?s
f’ fe-Appearance-Inference f

Figure 8: Example of an adjective-based dereification rule
using the pseudo-copula “to seem”

1 If the name p of a property is a past participle, it can
be extended with the prefix “is” (without postfix “of”).

2 If the name p of a property is a noun or a noun phrase,
and a range is declared for the property, let X be a set
containing p’s name and the hypernyms of all its word
senses (obtained from WordNet [6]). If for any element
x in X, p is a substring of x or x is a substring of p,
then p can be extended with the prefix “has”.

3 The same rule as above, but using the domain instead
of the range, which allows p to be extended with the
prefix “is” and postfix “of”.

4 If the property is symmetric, we can introduce exten-
sions both with “has” and with “is”+ . . . +“of”.

5 For every property p corresponding to the pattern “is
X of”, an inverse property can be created of the form
“has X”.

6 For every property p corresponding to the pattern “has
X”, an inverse property can be created of the form “is
X of”.

This process resembles a sort of canonicalization of entity
names [7], but in our case for properties. Note that steps 4–5
can also be carried out on the DBPs with identical results.
This canonicalization has independent value beyond its

use for matching as in this paper; especially when the canon-
icalization, as in our case, does not merely make the names
conform to a given pattern but also less ambiguous as well
as easier to understand by humans.

2.3 Matching
The final step is to match properties across datasets. We

focus on creating matches between direct binary predicates in
FrameBase and the refined property names of other sources.
In order to find matches, we use bag-of-words cosine simi-

larity measures that are optimized for the task at hand. We
tokenize the names, but do not use stemming, since we want
to increase specificity. We also do not perform stopword
removal, because, unlike in the typical use case of matching
large documents, common words such as prepositions can
be relevant in this context (consider “run for” versus “run
against”).



Each source dataset property is compared to each DBP
using a weighted combination of measures.

w1 cos(vSDP
1 , vDBP

1 ) + w2 cos(vSDP
2 , vDBP

2 ) + w3c1 + w4c2

• cos(vSDP
1 , vDBP

1 ) is the cosine between the vector for
the name of the source dataset property vSDP

1 and the
vector for the DBP’s name vDBP

1 . For DBPs, we remove
the “frame-element-object (FE-o)” name [11] because
these do not occur very frequently. For instance, “orig-
inal” is ommitted for “is copy of original”.
• cos(vSDP

2 , vDBP
2 ) is the cosine between vectors with addi-

tional terms describing the properties’ semantics. vSDP
2

includes terms from the name of the property, plus from
the domain and the range if available. vDBP

2 includes
the terms from the DBP’s name, plus the FE-o, the
FE-s, and the name and description of the associated
frame as well as all its superframes.
• c1 has value 1 if the frame element FE-o is classified as

Core FE if FrameNet, which means that it instantiates
a conceptually necessary component of a frame. These
kinds of frames are more likely to appear. The value is
also 1 if the FE is about Time or Place, because this
information is also frequent in datasets.
• c2 is the same for FE-s.
The DBP with the highest score is chosen, if this is higher

than a threshold T . The vector of weights w is set to w =
(0.7, 0.1, 0.1, 0.1) so that the three last elements favor the
closest match whenever there is a tie for cos(vSDP

1 , vDBP
1 ),

which can happen between two DBPs that only differ by
the FE-o name. cos(vSDP

2 , vDBP
2 ) is computationally more

heavy and, for reasons of efficiency, it is only evaluated when
cos(vSDP

1 , vDBP
1 ) is higher than T w1. The value of the global

threshold is set at T = w1 so cos(vSDP
1 , vDBP

1 ) = 1 is enough
to fire a rule.

3. Results
We test our method on DBpedia [2]. We canonicalized

1,608 DBpedia properties and evaluated a random sample
of 40, out of which 32 turned out to be correct. Of the 8
that were incorrect, 2 were also incorrect in their original
DBpedia form, resulting in a true precision of 85%. Some
examples are presented in Table 1.

Table 1: Example canonicalized properties.

source property IRI
source property name canonicalization
http://dbpedia.org/property/currentlyRunBy
currently run by is currently run by
http://dbpedia.org/ontology/goldenRaspberryAward
golden raspberry award has golden raspberry award
http://dbpedia.org/ontology/statistic
statistic is statistic of
http://dbpedia.org/ontology/linkTitle
link title has link title
http://dbpedia.org/ontology/firstLeader
first leader has first leader

We obtained a total of 315 integration rules (some exam-
ples below). We evaluated a random sample of 40, of which
29 were valid and symmetric, 1 was valid but mapped to a
generalization of the meaning, 8 were wrong originating from
a correct (yet sometimes with incomplete name) property,
and 2 were wrong but also incorrect in DBpedia. The result-
ing precision for valid rules was 79%. Below we reproduce
some obtained integration rules.

CONSTRUCT {
_:r a :frame-Appearance-smell.v .
_:r :fe-Appearance-Phenomenon ?S .
_:r :fe-Appearance-Characterization ?O .

} WHERE {
?S <http://dbpedia.org/property/smellsLike> ?O .

}

CONSTRUCT {
_:r a :frame-Residence-reside.v .
_:r :fe-Residence-Resident ?S .
_:r :fe-Residence-Location ?O .

} WHERE {
?S <http://dbpedia.org/property/residesIn> ?O .

}

CONSTRUCT {
_:r a :frame-Experiencer_focus-dislike.v .
_:r :fe-Experiencer_focus-Experiencer ?S .
_:r :fe-Experiencer_focus-Content ?O .

} WHERE {
?S <http://dbpedia.org/property/dislikes> ?O .

}

CONSTRUCT {
_:r a :frame-Possession-own.v .
_:r :fe-Possession-Owner ?S .
_:r :fe-Possession-Possession ?O .

} WHERE {
?S <http://dbpedia.org/ontology/owns> ?O .

}

This is an example of a wrong rule.

CONSTRUCT {
_:r a :frame-Education_teaching-school.v .
_:r :fe-Education_teaching-Student ?S .
_:r :fe-Education_teaching-Skill ?O .

} WHERE {
?S <http://dbpedia.org/property/schooledAt> ?O .

}

4. Future Work
We are currently working on creating very complex pat-

terns for certain DBPs whose syntactic head is a noun for
which the governing verb (the verb whose object is the noun)
adds semantics in a similar way as the pseudo-copulas in
Section 2.1. Figure 9 shows an example of a very complex
noun-based ReDer rule. In this case, it is not possible to
work with all possible combinations of governing verbs as
we did with the copulas, because many verbs will not make
sense (compare “develop understanding” with “run under-
standing”). Therefore, we must use the governing verb from
FrameNet’s example sentences. Because many verbs can be



?s dbp-Awareness-developsUnderstandingOfContent ?o
l
f type frame-Progress-develop.v
f fe-Progress-Entity ?s
f fe-Progress-Post_state f’
f’ type frame-Awareness-understanding.n
f’ fe-Awareness-Cognizer ?s
f’ fe-Awareness-Content ?o

Figure 9: Example of a very complex noun-based ReDer
rule

?s http://dbpedia.org/ontology/numberOfCounties ?o
l
f type frame-Quantity
f fe-Quantity-Individuals

<http://dbpedia.org/property/counties>
f fe-Quantity-Quantity ?o
f’ type frame-Inclusion
f’ fe-Awareness-Part f
f’ fe-Awareness-Total ?s

Figure 10: Example of a very complex integration rule to
express amounts

associated with different frames, the right frame must be
chosen on the reified side of the ReDer rule. Due to the high
number of possible verbs that could be governing nouns in
the example sentences, an automatic disambiguation method
is necessary. Likewise, an automatic selection of the FE
connecting the frames for the noun and the governing verb
is necessary, e.g., Post_state in Figure 9.
We are also working on creating integration rules to ex-

press very complex reification patterns for certain linguistic
patterns in the property name. For instance, Figure 10 shows
an example expressing amounts for property names satisfy-
ing the regular expression (has )?number of (.*), which is
relatively common among LOD datasets mined from tables
with statistics. The recall of this method can be increased
if the canonicalization is also extended to complete these
patterns in case parts of them are omitted. For instance,
for the example about amounts given above, the prefix “has
number of” could be added to those properties whose name
is a countable noun or a noun phrase, and whose range is a
positive integer (in LOD datasets typically implemented as
literals with datatypes xsd:nonNegativeInteger).
Finally, we are also working on combining all these rules

with other types of rules that map entities of the same type
(classes with classes, properties with properties), and can
be built re-using existing owl:sameAs ontology alignment
systems. This combination will allow arbitrarily complex
mappings, not only between the external datasets and Frame-
Base, but transitively between the external datasets.

5. Conclusion
In this paper, we have shown the importance of establishing

complex mappings between linked open datasets, transcend-
ing the space of binary relationships that can be captured
using simple links of type owl:sameAs, rdfs:subClassOf, or
rdfs:subPropertyOf. We have shown schema-level methods
to create these complex mappings, using a star-based topol-
ogy with a wide schema as a central hub, and exploiting
its connections to computational linguistics. As part of this
process, we have also provided heuristics to extend, disam-

biguate, and canonicalize the names of properties in the
source datasets. We have evaluated our approach on DBpe-
dia, finding that it yields encouraging results across different
domains. Finally, we have outlined future work to create
even more integration rules involving complex patterns.
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